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Modeling plant growth and pattern formation
Henrik Jönsson and Pawel Krupinski
Abstract

Plants continue to grow and generate new organs in symmetric

patterns throughout their lives. This development requires an

interconnected regulation of genes, hormones, and anisotropic

growth, which in part is guided by environmental cues.

Recently, several studies have used a combination of

experiments and mathematical modeling to elucidate the

mechanisms behind different growth and molecular patterns in

plants. The computational models were used to investigate the

often non-intuitive consequences of different hypotheses, and

the in silico simulations of the models inspired further

experimentation.
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Introduction
Plant development can be described as a dynamic system

of molecular patterning, resulting from biochemical reac-

tions and molecular transport [1,2], combined with a

regulated growth, resulting from an isotropic turgor pres-

sure and anisotropic mechanical properties of the cell

walls [3]. The coordination between molecular patterning

and morphogenesis suggests the existence of feedback

between the two systems. Recent increase in the amount

of available molecular data together with in vivo measure-

ments of the cytoskeleton has enhanced the possibility to

investigate the interactions between genes, hormones,

and growth as a single system.

Computational modeling provides an important tool for

examining the hormonal patterning, the genetic network

modules that control differentiation, and the possibility of

mechanical properties driving patterning. In this review

we will discuss recent progress in modeling these pro-

cesses including efforts combining molecular patterning

with mechanical changes that alter growth dynamics. The

examples given show that different modeling techniques
www.sciencedirect.com
can be successful and that the models in iterative com-

bination with experiments present a powerful approach

toward a more comprehensive understanding of plant

development.

Modeling hormonal control of development
Phytohormones regulate many aspects of plant growth

and development [2]. A prominent example investigated

in many modeling studies is auxin. Auxin is fundamental

to multiple physiological processes at different scales in

the plant including embryonic patterning, phyllotaxis,

tropism, and the development of leaf veins and root hairs

[4]. Critical for auxin patterning is its polar movement

between cells facilitated by membrane-bound influx and

efflux mediators — AUX and PIN family of proteins,

respectively.

In roots the transport mediators are expressed in a static

pattern, which has been adopted in models using a pre-

defined localization of transport mediators to predict

auxin distribution. PIN efflux mediators are localized

basally (toward the root tip) in internal tissues and apically

in epidermal cells, with some lateral inward localization in

outer cell layers suggesting a ‘reflux’ of auxin that creates

a maximum at the root tip. Grieneisen et al. [5��] imple-

mented these PIN patterns in a two-dimensional model

showing that this was sufficient to create the experimen-

tally verified stable auxin maximum at the root apex, and

also predicted several perturbations and auxin-regulated

growth (Figure 1a). A similar model was used to argue that

changes in auxin concentration due to a geometric trans-

formation could be responsible for the initiation of the

lateral root [6]. Swarup et al. [7] used a three-dimensional

model of the outer cell layers of the root to demonstrate

the importance of the epidermally expressed AUX1 for

apical transport of auxin and maintenance of the asym-

metry in auxin localization caused by gravitropic

response. Using a similar model, Jones et al. [8�] found

that differentially expressed AUX1 in root-hair versus

non-hair cells promotes a more uniform and long-ranged

distribution of auxin (Figure 1b). These root models are

examples of successful approaches where the models

have been developed and challenged with direct com-

parisons with experiments. It would be interesting to

compare predictions of a model including both internal

tissue and influx mediators with increasingly resolved

quantitative measurements of auxin in the root (e.g. [9]).

Other aspects of auxin patterning show dynamic expres-

sion and localization of transport mediators. Molecular

models of leaf venation rely on the prevailing idea

of canalization introduced by Sachs [10] and first
Current Opinion in Plant Biology 2010, 13:5–11
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Figure 1

Models of auxin transport in the root demonstrating different topologies used in simulations. (a) Two-dimensional model from Grieneisen et al. [5��]

including tissue growth. The figures show two time points from a root growth simulation using a Cellular Potts Model (left 12 h, right 8 d). Auxin

concentration indicated in shades of blue (dark blue represents high concentrations). The simulation shows the maintenance of a stable auxin

maximum during growth due to the transport paths defined by the localization of efflux (PIN) transport mediators (see main text). Adapted by

permission from Macmillan Publishers Ltd: [Nature] [5��], copyright 2007. (b) Three-dimensional model of outer cell layers from Jones et al. [8�]. Top

picture shows the cell layout and positioning of efflux and influx transport mediators. AUX1, shown in red, is positioned toward all sides in epidermal

non-root-hair cells. On the right, a horizontal cut shows the root-hair cells without AUX1. PIN2, shown in purple, is localized apically in the outer two

layers and basally in the third layer of cells. Bottom picture presents auxin concentrations in files of epidermal cells, red: hair cells, blue: non-hair cells.

Adapted by permission from Macmillan Publishers Ltd: [Nature Cell Biology] [8�], copyright 2008.
implemented by Mitchison [11,12] 30 years ago. Accord-

ing to this idea, auxin regulates its own transport via a

positive feedback from the auxin flux, which can lead to

the formation of streaks between auxin sources and sinks.

A problem with the flux-based approach has been the

appearance of low auxin concentrations in the forming

veins in contrast to experimental observations. Interest-

ingly, it has been shown that a proper inclusion of PIN1

cycling in the model, such that there is a competition of

PIN1 among a cell’s membranes, is sufficient for gener-

ating high auxin concentration in the veins [13,14]. Also,

including influx mediators allows for cells with high auxin

concentrations to act as sinks [15]. Leaf veins often form

loops, which the original flux-based hypothesis could not

explain. Mitchison demonstrated that properly positioned

auxin source cells could lead to loops, something revisited
Current Opinion in Plant Biology 2010, 13:5–11
in several current models [16,17]. Dimitrov and Zucker

[18] showed that constant production of auxin together

with a flux-based transport rule can lead to loops in

higher order vein formation (Figure 2a). There is also

an ongoing debate whether a flux-sensing mechanism is

probable. Mitchison argued that a directional auxin

flux will lead to an internal gradient within the cells,

which might be easier for the cell to measure. Recently

this idea has been implemented in a model showing

that it can result in the formation of a vein [19]. For

some reason, robustness of patterning is rarely discussed

for flux-based models. An exception is the work of

Fujita and Mochizuki [14] who demonstrate high sensi-

tivity of pattern-forming capabilities of a flux-based

model to the choice of parameter values and initial

conditions.
www.sciencedirect.com
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Figure 2

Models for secondary leaf vein formation. The figures show the development where the left pane is an early, and the right pane is a later time point. (a)

Model with homogeneous auxin production by Dimitrov and Zucker [18]. Existing areoles (blue lines) act as sinks and provide zero auxin concentration

boundary condition in the model. New veins (green lines) are created from sites of maximal auxin gradient (yellow) and progress toward auxin

maximum at the center of areole. Adapted by permission Copyright 2006 National Academy of Sciences, USA. (b) The mechanical model from Laguna

et al. [51�] explores a possible role of stresses in the formation of vein patterns. Compressive stress develops in the tissue due to different growth rates

of mesophyll (internal, fast growing) and epidermal cells. The vein cells are assumed to have distinct elastic properties. In a leaf growth simulation

seeded with an preexisting vein pattern (orange lines) new veins (black lines) develop as energetically favorable state of the system. Adapted form

Laguna et al. [51�].
The regular and repeatable phyllotactic patterns of

plant organs have inspired modelers for a long time.

Auxin transport plays an essential role in this process

where auxin peaks, directed by specific polarization of

PIN1, form at the sites of incipient primordia [20].

Models have reproduced auxin peaks at the correct

positions given experimentally extracted PIN1 polariz-

ation [21,22]. The more elusive problem, also addressed

by modeling, is what kind of local mechanism can

lead to the formation of such patterns in a growing

meristem. Jönsson et al. [22] and Smith et al. [23]

proposed that PIN1 polarizes toward cells with high

auxin concentration. This produces a positive feedback

loop for auxin, which flows toward maxima and depletes

regions around them, and the models were able to

generate phyllotactic patterns. Recently, the require-

ments for this novel pattern-forming mechanism

were investigated in detail and it was shown that it

is also capable of forming other patterns, such as stripes

[24].
www.sciencedirect.com
The idea of a concentration-based auxin-PIN1 coupling

(up the gradient) seems to be incompatible with the

original (down the gradient) flux-based concept proposed

for leaf venation and several models have tried to over-

come this. One proposed solution is the existence of

different mechanisms in different tissues. The idea that

auxin is localized to the primordia site in the epidermal

cell layer via the concentration-based mechanism and

switching to flux-based transport in internal layers to

simulate outflow of the auxin toward vascular tissue

has been introduced [25�,26�]. Also, a unified description

where either a concentration-based approach [27] or a

flux-based approach [28�] has been suggested. Stoma et al.
[28�] successfully adapted the flux-based mechanism for

phyllotaxis assuming low auxin concentrations in the

primordia during part of its development.

Models of genetic regulation
The shoot apical meristem (SAM) is a stem cell niche

regulating above-ground plant development [1]. Many
Current Opinion in Plant Biology 2010, 13:5–11
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proteins important for SAM continuation have been dis-

covered, among which the feedback loop between CLA-

VATA (CLV) and WUSCHEL (WUS) has attracted

special attention. Jönsson et al. [29,30] used a multicel-

lular model setup to investigate several aspects of the

CLAVATA/WUSCHEL feedback. They provided a hy-

pothesis for how the asymmetric localization of a CLV3

region from the activating WUS region could appear [29],

and demonstrated how a spatially restricted activation of

WUS via a reaction-diffusion dynamics was sufficient to

explain the spontaneous organization and perturbed reor-

ganization of the WUS domain [30]. Recently, Geier et al.
[31] used a population-based model to investigate how

experimentally measured variations in CLV and WUS

expression regions could be explained by regulating

differentiation rates and using experimental growth rates

as input. They showed that the regulation of differen-

tiation rates from a signal originating either from the

CLV3 or WUS domain was sufficient to explain the

variation, although the clv and wus mutants were hard

to reconcile in their model. Although our understanding

of the SAM regulation has been improved by recent

experiments and models, the picture is still not complete.

Additional known regulations will need to be included in

the models and especially interactions between the CLV/

WUS network and proteins in the peripheral zone could

provide improvements for current models.

The genetic patterns defining flower development have

been well characterized in experiments [32] and investi-

gated in Boolean network models [33]. Boolean networks

provide a simplistic model where genes can be only on or

off, while the interactions are encoded in logic rules such

as AND and OR. Although simplistic, the genetic net-

work models result in basins of attractions correlating

with the different cell-types found in flowers, and hence

suggest that the defined network structure itself holds

much of the regulatory information. Recently, stochastic

noise has been introduced in the Boolean models, indi-

cating that the differentiation path could be captured

within these models [34]. It would be interesting to see a

model including spatial aspects of flower development,

which is disregarded in current models.

Cellular differentiation leading to trichome (hair cell)

formation appears at the epidermis in young leaves and

in roots, and the underlying genetic networks are similar

[35]. The molecular mechanisms represent a classical

reaction-diffusion model where protein activate and

repress each other via formed complexes and where

transport between cells are present, and this has inspired

several recent models [36–38,39�,40�,41]. Digiuni et al.
[39�] used a deterministic differential equation model to

support their new data on protein transport and could

discriminate between different hypotheses for the for-

mation of a competing inactivated complex in the leaf.

Savage et al. [40�], on the other hand, used a stochastic
Current Opinion in Plant Biology 2010, 13:5–11
Boolean model to show that the often used self-activation

of one of the activators could not explain all mutant data

in the root. Since the proposed models typically describe a

simplified picture addressing parts of the network, and

the amount of data is continuously increasing, a more

comprehensive model challenged by numerous mutants

is expected in the near future.

Including growth and mechanics
A great current challenge is to understand plant morpho-

genesis from the cellular perspective. From a mechanical

point of view the shape of a tissue is determined by

equilibrium of forces, which at the cell level result from

turgor, symplastic inhomogeneous growth of the whole

tissue and stresses in the cell walls. Elastic properties of

the cell walls are changing during the course of plant

development, thereby guiding growth, and can achieve

large degrees of anisotropy due to the presence of

oriented cellulose fibrillar networks [3]. Two interesting

questions are how molecular patterns can lead to morpho-

genetic patterns [42], and also whether mechanics itself

can create patterning [43]. It has recently been shown in

models how differential growth can lead to complex

shapes [42,44,45], and this has also been included in

cell-based tissue models [25�,46��] (Figure 3). The idea

that mechanical buckling can initiate phyllotactic pat-

terning [47] has recently been revisited [48,49�], where a

continuous model generated phyllotactic patterns. New-

ell et al. [49�] showed that the mechanical solutions were

very similar to a continuous implementation of the auxin

transport model of Jönsson et al. [22]. Further, they

connected the mechanical and molecular models and

showed that the combination may alter the patterns from

the individual models. An assumption in the buckling

idea is that the epidermis is experiencing compressive

stresses. Hamant et al. [46��] assume an epidermis under

tension and show that microtubules organizing to orient

microfibrils to resist stress can explain the microtubular

patterns in the SAM also for several perturbation exper-

iments. Auxin is used to loosen the cell walls leading to a

circumferential microtubular alignment surrounding a

new primordia, already before any visible morphological

change (Figure 3b). This augments the directional growth

of the primordia, and the resulting geometry of the tissue

reinforces the stress pattern, thus generating a positive

feedback known to amplify initial perturbations. The

importance of growth anisotropy at the SAM was further

investigated by Corson et al. [50], who showed that cells

behaved similarly to soap bubbles in oryzalin-treated

shoots where isotropic growth follows. Finally, mechan-

ical rules for the initiation and development of leaf

venation have also been proposed [51�,52] (Figure 2b).

In contrast to the canalization hypothesis, looped vena-

tion patterns occur naturally in this case. The examples

given in this section show the increased interest in

investigating how molecular patterning, mechanics, and

growth are connected. An improved analysis of these
www.sciencedirect.com
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Figure 3

Mechanical Finite Element Models for primordia initiation in the shoot. In the models, auxin is inducing cell growth. (a) Two-dimensional model from Dupuy

et al. [25�]. A concentration-based auxin transport model is used in the top (epidermal) layer, and a flux-based auxin transport model is used in the lower

(internal) layers. Left pane: time evolution of shape and auxin concentration. Right pane: transport mediator localizations. Top: AUX1 conveys auxin to L1

layer, middle: configuration of PIN1 directing auxin toward maxium in L1 layer, bottom: polarization of PIN1 facilitating canalization process. Adapted from

Dupuy et al. [25�], by permission from Oxford University Press. (b) Finite Element Model similar to the one used in [46��]. Circumferential stresses (white

bars) dynamically develop around cells with high auxin concentration (blue-green) in the epidermal tissue layer. This effect is due to an overall tension in the

epidermal layer and increased growth due to wall weakening in cells with high auxin concentration. Image by PK.
interactions will follow with the development of detailed

dynamical three-dimensional mechanical models.

Conclusions
Computational modeling might not yet be a standard tool

in the investigation of plant development, but the selec-

tion of papers in this review shows that it is increasingly

used in combination with experimental methods to dee-

pen our understanding of specific hormonal signaling,

genetic regulation, and morphogenetic events. The pre-

sented publications show that often several models can

be used to explain single phenomena, and hence the

models must always be challenged in new experiments

driven by the predictions from the current models. Live

imaging, where molecular and cytoskeleton dynamics is

visualized, also directly following perturbations [53],

increases our ability to compare and challenge our

models with experimental data. The combination of

molecular and cytoskeleton data opens up for direct

testing of hypotheses on how genetic and morphological

changes feed back to each other and provides an addres-

sable modeling challenge for the near future. Another

interesting experimental advance is the development of

high throughput and auxin quantification techniques at a

cell-type specific resolution [9,54–56]. Such data may be
www.sciencedirect.com
used to infer large-scale networks in unbiased compu-

tational approaches [57].

Modeling will be key to understanding the complex

interactions driving plant development. The models have

to be able to explain the inhomogeneities and anisotro-

pies driving patterning. A molecular anisotropic descrip-

tion relies on the measurement of gradients, and hence on

non-trivial integration of spatial information. The tensor-

ial nature of stresses may play an important role here. In

the coming years, computational modeling might be the

optimal way to resolve the importance of different mech-

anisms.
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