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Abstract

Plants continue to grow and generate new organs in symmetric
patterns throughout their lives. This development requires an
interconnected regulation of genes, hormones, and anisotropic
growth, which in part is guided by environmental cues.
Recently, several studies have used a combination of
experiments and mathematical modeling to elucidate the
mechanisms behind different growth and molecular patterns in
plants. The computational models were used to investigate the
often non-intuitive consequences of different hypotheses, and
the in silico simulations of the models inspired further
experimentation.
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Introduction

Plant development can be described as a dynamic system
of molecular patterning, resulting from biochemical reac-
tions and molecular transport [1,2], combined with a
regulated growth, resulting from an isotropic turgor pres-
sure and anisotropic mechanical properties of the cell
walls [3]. The coordination between molecular patterning
and morphogenesis suggests the existence of feedback
between the two systems. Recent increase in the amount
of available molecular data together with 7z vivo measure-
ments of the cytoskeleton has enhanced the possibility to
investigate the interactions between genes, hormones,
and growth as a single system.

Computational modeling provides an important tool for
examining the hormonal patterning, the genetic network
modules that control differentiation, and the possibility of
mechanical properties driving patterning. In this review
we will discuss recent progress in modeling these pro-
cesses including efforts combining molecular patterning
with mechanical changes that alter growth dynamics. The
examples given show that different modeling techniques

can be successful and that the models in iterative com-
bination with experiments present a powerful approach
toward a more comprehensive understanding of plant
development.

Modeling hormonal control of development
Phytohormones regulate many aspects of plant growth
and development [2]. A prominent example investigated
in many modeling studies is auxin. Auxin is fundamental
to multiple physiological processes at different scales in
the plant including embryonic patterning, phyllotaxis,
tropism, and the development of leaf veins and root hairs
[4]. Critical for auxin patterning is its polar movement
between cells facilitated by membrane-bound influx and
efflux mediators — AUX and PIN family of proteins,
respectively.

In roots the transport mediators are expressed in a static
pattern, which has been adopted in models using a pre-
defined localization of transport mediators to predict
auxin distribution. PIN efflux mediators are localized
basally (toward the root tip) in internal tissues and apically
in epidermal cells, with some lateral inward localization in
outer cell layers suggesting a ‘reflux’ of auxin that creates
a maximum at the root tip. Grieneisen ez a/. [5°°] imple-
mented these PIN patterns in a two-dimensional model
showing that this was sufficient to create the experimen-
tally verified stable auxin maximum at the root apex, and
also predicted several perturbations and auxin-regulated
growth (Figure 1a). A similar model was used to argue that
changes in auxin concentration due to a geometric trans-
formation could be responsible for the initiation of the
lateral root [6]. Swarup e a/. [7] used a three-dimensional
model of the outer cell layers of the root to demonstrate
the importance of the epidermally expressed AUX1 for
apical transport of auxin and maintenance of the asym-
metry in auxin localization caused by gravitropic
response. Using a similar model, Jones ez /. [8°] found
that differentially expressed AUX1 in root-hair versus
non-hair cells promotes a more uniform and long-ranged
distribution of auxin (Figure 1b). These root models are
examples of successful approaches where the models
have been developed and challenged with direct com-
parisons with experiments. It would be interesting to
compare predictions of a model including both internal
tissue and influx mediators with increasingly resolved
quantitative measurements of auxin in the root (e.g. [9]).

Other aspects of auxin patterning show dynamic expres-
sion and localization of transport mediators. Molecular
models of leaf venation rely on the prevailing idea
of canalization introduced by Sachs [10] and first
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Figure 1
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Models of auxin transport in the root demonstrating different topologies used in simulations. (a) Two-dimensional model from Grieneisen et al. [5°°]
including tissue growth. The figures show two time points from a root growth simulation using a Cellular Potts Model (left 12 h, right 8 d). Auxin
concentration indicated in shades of blue (dark blue represents high concentrations). The simulation shows the maintenance of a stable auxin
maximum during growth due to the transport paths defined by the localization of efflux (PIN) transport mediators (see main text). Adapted by
permission from Macmillan Publishers Ltd: [Nature] [5°°], copyright 2007. (b) Three-dimensional model of outer cell layers from Jones et al. [8°]. Top
picture shows the cell layout and positioning of efflux and influx transport mediators. AUX1, shown in red, is positioned toward all sides in epidermal
non-root-hair cells. On the right, a horizontal cut shows the root-hair cells without AUX1. PIN2, shown in purple, is localized apically in the outer two
layers and basally in the third layer of cells. Bottom picture presents auxin concentrations in files of epidermal cells, red: hair cells, blue: non-hair cells.
Adapted by permission from Macmillan Publishers Ltd: [Nature Cell Biology] [8°], copyright 2008.

implemented by Mitchison [11,12] 30 years ago. Accord-
ing to this idea, auxin regulates its own transport via a
positive feedback from the auxin flux, which can lead to
the formation of streaks between auxin sources and sinks.
A problem with the flux-based approach has been the
appearance of low auxin concentrations in the forming
veins in contrast to experimental observations. Interest-
ingly, it has been shown that a proper inclusion of PIN1
cycling in the model, such that there is a competition of
PIN1 among a cell’s membranes, is sufficient for gener-
ating high auxin concentration in the veins [13,14]. Also,
including influx mediators allows for cells with high auxin
concentrations to act as sinks [15]. Leaf veins often form
loops, which the original flux-based hypothesis could not
explain. Mitchison demonstrated that properly positioned
auxin source cells could lead to loops, something revisited

in several current models [16,17]. Dimitrov and Zucker
[18] showed that constant production of auxin together
with a flux-based transport rule can lead to loops in
higher order vein formation (Figure 2a). There is also
an ongoing debate whether a flux-sensing mechanism is
probable. Mitchison argued that a directional auxin
flux will lead to an internal gradient within the cells,
which might be easier for the cell to measure. Recently
this idea has been implemented in a model showing
that it can result in the formation of a vein [19]. For
some reason, robustness of patterning is rarely discussed
for flux-based models. An exception is the work of
Fujita and Mochizuki [14] who demonstrate high sensi-
tivity of pattern-forming capabilities of a flux-based
model to the choice of parameter values and initial
conditions.
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Models for secondary leaf vein formation. The figures show the development where the left pane is an early, and the right pane is a later time point. (a)
Model with homogeneous auxin production by Dimitrov and Zucker [18]. Existing areoles (blue lines) act as sinks and provide zero auxin concentration
boundary condition in the model. New veins (green lines) are created from sites of maximal auxin gradient (yellow) and progress toward auxin
maximum at the center of areole. Adapted by permission Copyright 2006 National Academy of Sciences, USA. (b) The mechanical model from Laguna
et al. [51°] explores a possible role of stresses in the formation of vein patterns. Compressive stress develops in the tissue due to different growth rates
of mesophyll (internal, fast growing) and epidermal cells. The vein cells are assumed to have distinct elastic properties. In a leaf growth simulation
seeded with an preexisting vein pattern (orange lines) new veins (black lines) develop as energetically favorable state of the system. Adapted form

Laguna et al. [51°].

The regular and repeatable phyllotactic patterns of
plant organs have inspired modelers for a long time.
Auxin transport plays an essential role in this process
where auxin peaks, directed by specific polarization of
PIN1, form at the sites of incipient primordia [20].
Models have reproduced auxin peaks at the correct
positions given experimentally extracted PIN1 polariz-
ation [21,22]. The more elusive problem, also addressed
by modeling, is what kind of local mechanism can
lead to the formation of such patterns in a growing
meristem. Jonsson e al. [22] and Smith er al. [23]
proposed that PIN1 polarizes toward cells with high
auxin concentration. This produces a positive feedback
loop for auxin, which flows toward maxima and depletes
regions around them, and the models were able to
generate phyllotactic patterns. Recently, the require-
ments for this novel pattern-forming mechanism
were investigated in detail and it was shown that it
is also capable of forming other patterns, such as stripes

[24].

The idea of a concentration-based auxin-PIN1 coupling
(up the gradient) seems to be incompatible with the
original (down the gradient) flux-based concept proposed
for leaf venation and several models have tried to over-
come this. One proposed solution is the existence of
different mechanisms in different tissues. The idea that
auxin is localized to the primordia site in the epidermal
cell layer via the concentration-based mechanism and
switching to flux-based transport in internal layers to
simulate outflow of the auxin toward vascular tissue
has been introduced [25°,26°]. Also, a unified description
where either a concentration-based approach [27] or a
flux-based approach [28°] has been suggested. Stoma ez a/.
[28°] successfully adapted the flux-based mechanism for
phyllotaxis assuming low auxin concentrations in the
primordia during part of its development.

Models of genetic regulation
The shoot apical meristem (SAM) is a stem cell niche
regulating above-ground plant development [1]. Many
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proteins important for SAM continuation have been dis-
covered, among which the feedback loop between CLA-
VATA (CLV) and WUSCHEL (WUS) has attracted
special attention. Jonsson ez a/l. [29,30] used a multicel-
lular model setup to investigate several aspects of the
CLAVATA/WUSCHEL feedback. They provided a hy-
pothesis for how the asymmetric localization of a CLLV3
region from the activating WUS region could appear [29],
and demonstrated how a spatially restricted activation of
WUS via a reaction-diffusion dynamics was sufficient to
explain the spontaneous organization and perturbed reor-
ganization of the WUS domain [30]. Recently, Geier ez a/.
[31] used a population-based model to investigate how
experimentally measured variations in CLV and WUS
expression regions could be explained by regulating
differentiation rates and using experimental growth rates
as input. They showed that the regulation of differen-
tiation rates from a signal originating either from the
CLV3 or WUS domain was sufficient to explain the
variation, although the ¢& and ww#s mutants were hard
to reconcile in their model. Although our understanding
of the SAM regulation has been improved by recent
experiments and models, the picture is still not complete.
Additional known regulations will need to be included in
the models and especially interactions between the CLV/
WUS network and proteins in the peripheral zone could
provide improvements for current models.

The genetic patterns defining flower development have
been well characterized in experiments [32] and investi-
gated in Boolean network models [33]. Boolean networks
provide a simplistic model where genes can be only on or
off, while the interactions are encoded in logic rules such
as AND and OR. Although simplistic, the genetic net-
work models result in basins of attractions correlating
with the different cell-types found in flowers, and hence
suggest that the defined network structure itself holds
much of the regulatory information. Recently, stochastic
noise has been introduced in the Boolean models, indi-
cating that the differentiation path could be captured
within these models [34]. It would be interesting to see a
model including spatial aspects of flower development,
which is disregarded in current models.

Cellular differentiation leading to trichome (hair cell)
formation appears at the epidermis in young leaves and
in roots, and the underlying genetic networks are similar
[35]. The molecular mechanisms represent a classical
reaction-diffusion model where protein activate and
repress each other via formed complexes and where
transport between cells are present, and this has inspired
several recent models [36-38,39°,40°,41]. Digiuni e al.
[39°] used a deterministic differential equation model to
support their new data on protein transport and could
discriminate between different hypotheses for the for-
mation of a competing inactivated complex in the leaf.
Savage e al. [40°], on the other hand, used a stochastic

Boolean model to show that the often used self-activation
of one of the activators could not explain all mutant data
in the root. Since the proposed models typically describe a
simplified picture addressing parts of the network, and
the amount of data is continuously increasing, a more
comprehensive model challenged by numerous mutants
is expected in the near future.

Including growth and mechanics

A great current challenge is to understand plant morpho-
genesis from the cellular perspective. From a mechanical
point of view the shape of a tissue is determined by
equilibrium of forces, which at the cell level result from
turgor, symplastic inhomogeneous growth of the whole
tissue and stresses in the cell walls. Elastic properties of
the cell walls are changing during the course of plant
development, thereby guiding growth, and can achieve
large degrees of anisotropy due to the presence of
oriented cellulose fibrillar networks [3]. T'wo interesting
questions are how molecular patterns can lead to morpho-
genetic patterns [42], and also whether mechanics itself
can create patterning [43]. It has recently been shown in
models how differential growth can lead to complex
shapes [42,44,45], and this has also been included in
cell-based tissue models [25°,46°°] (Figure 3). The idea
that mechanical buckling can initiate phyllotactic pat-
terning [47] has recently been revisited [48,49°], where a
continuous model generated phyllotactic patterns. New-
ell ez al. [49°] showed that the mechanical solutions were
very similar to a continuous implementation of the auxin
transport model of Jonsson ez a/. [22]. Further, they
connected the mechanical and molecular models and
showed that the combination may alter the patterns from
the individual models. An assumption in the buckling
idea is that the epidermis is experiencing compressive
stresses. Hamant e7 a/. [46°°] assume an epidermis under
tension and show that microtubules organizing to orient
microfibrils to resist stress can explain the microtubular
patterns in the SAM also for several perturbation exper-
iments. Auxin is used to loosen the cell walls leading to a
circumferential microtubular alignment surrounding a
new primordia, already before any visible morphological
change (Figure 3b). This augments the directional growth
of the primordia, and the resulting geometry of the tissue
reinforces the stress pattern, thus generating a positive
feedback known to amplify initial perturbations. The
importance of growth anisotropy at the SAM was further
investigated by Corson ez a/. [50], who showed that cells
behaved similarly to soap bubbles in oryzalin-treated
shoots where isotropic growth follows. Finally, mechan-
ical rules for the initiation and development of leaf
venation have also been proposed [51°,52] (Figure 2b).
In contrast to the canalization hypothesis, looped vena-
tion patterns occur naturally in this case. The examples
given in this section show the increased interest in
investigating how molecular patterning, mechanics, and
growth are connected. An improved analysis of these
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Mechanical Finite Element Models for primordia initiation in the shoot. In the models, auxin is inducing cell growth. (a) Two-dimensional model from Dupuy
et al. [25°]. A concentration-based auxin transport model is used in the top (epidermal) layer, and a flux-based auxin transport model is used in the lower
(internal) layers. Left pane: time evolution of shape and auxin concentration. Right pane: transport mediator localizations. Top: AUX1 conveys auxin to L1
layer, middle: configuration of PIN1 directing auxin toward maxium in L1 layer, bottom: polarization of PIN1 facilitating canalization process. Adapted from
Dupuy et al. [25°], by permission from Oxford University Press. (b) Finite Element Model similar to the one used in [46°°]. Circumferential stresses (white
bars) dynamically develop around cells with high auxin concentration (blue-green) in the epidermal tissue layer. This effect is due to an overall tension in the
epidermal layer and increased growth due to wall weakening in cells with high auxin concentration. Image by PK.

interactions will follow with the development of detailed
dynamical three-dimensional mechanical models.

Conclusions

Computational modeling might not yet be a standard tool
in the investigation of plant development, but the selec-
tion of papers in this review shows that it is increasingly
used in combination with experimental methods to dee-
pen our understanding of specific hormonal signaling,
genetic regulation, and morphogenetic events. The pre-
sented publications show that often several models can
be used to explain single phenomena, and hence the
models must always be challenged in new experiments
driven by the predictions from the current models. Live
imaging, where molecular and cytoskeleton dynamics is
visualized, also directly following perturbations [53],
increases our ability to compare and challenge our
models with experimental data. The combination of
molecular and cytoskeleton data opens up for direct
testing of hypotheses on how genetic and morphological
changes feed back to each other and provides an addres-
sable modeling challenge for the near future. Another
interesting experimental advance is the development of
high throughput and auxin quantification techniques at a
cell-type specific resolution [9,54-56]. Such data may be

used to infer large-scale networks in unbiased compu-
tational approaches [57].

Modeling will be key to understanding the complex
interactions driving plant development. The models have
to be able to explain the inhomogeneities and anisotro-
pies driving patterning. A molecular anisotropic descrip-
tion relies on the measurement of gradients, and hence on
non-trivial integration of spatial information. The tensor-
ial nature of stresses may play an important role here. In
the coming years, computational modeling might be the
optimal way to resolve the importance of different mech-
anisms.
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