2018 CDB Part IB Plant Development

Lecture 3

Regulation of gene expression by auxin

Jim Haseloff Department of Plant Sciences (www.haseloff-lab.org/education)

Protonated IAA Dissociated IAA PIN efflux carrier SCF-TIR ubiquitin ligase Aux/IAA protein Auxin response factor

OVERVIEW:

Regulation of gene expression by auxin

- 1. Intracellular binding of auxin
- 2. Targeted degradation of Aux/IAA repressors
- 3. Selective activation of genes by ARF binding to auxin responsive promoter elements
- 4. Recruitment of protein co-factors for maintenance of gene expression and chromatin remodelling

1. Intracellular binding of auxin

TIR1-mediated mediated binding of auxin

Auxin receptors in Arabidopsis (6)

			Genetic evidence for role	
Gene	Product	Function	development	References
TIR1	<u>T</u> ransport inhibitor <u>r</u> esponse 1, TIR1 F-box protein	Interacts with ASK1; interacts with Aux/IAAs; auxin increases Aux/IAA affinity; crystal structure shows TIR1-auxin- Aux/IAA complex	Loss-of-function mutations reduce multiple auxin responses	N. Dharmasiri et al. 2003, Dharmasiri et al. 2005b, Gray et al. 1999, Kepinski & Leyser 2005, Ruegger et al. 1998, Tan et al. 2007
AFB1	<u>Auxin F-b</u> ox protein 1 (AFB1)	Member of TIR1/AFB family; auxin increases Aux/IAA affinity	Loss of function with <i>tir1</i> , <i>afb2</i> , <i>afb3</i> dramatically impairs development	Dharmasiri et al. 2005b
AFB2	$\frac{\text{Auxin } \underline{\text{F-box protein}}}{2 \text{ (AFB2)}}$	Member of TIR1/AFB family; auxin increases Aux/IAA affinity	Loss of function with <i>tir1</i> reduces multiple auxin responses	Dharmasiri et al. 2005b
AFB3	$\frac{\text{Auxin } \underline{\text{F-box protein}}}{3 \text{ (AFB3)}}$	Member of TIR1/AFB; auxin increases Aux/IAA affinity	Loss of function with <i>tir1</i> and <i>afb2</i> dramatically impairs development	Dharmasiri et al. 2005b
AFB4	$\frac{\text{Auxin } \underline{\text{F-box protein}}}{4 \text{ (AFB4)}}$	Member of TIR1/AFB family		Dharmasiri et al. 2005b
AFB5	$\frac{\text{Auxin } \underline{\text{F-box protein}}}{5 \text{ (AFB5)}}$	Member of TIR1/AFB family	Loss-of-function mutation confers resistance to auxin analogs	Dharmasiri et al. 2005b, Walsh et al. 2006

TIR1-mediated ubiquitination of AUX/IAA proteins

Figure 2

Auxin perception by the F-box protein TIR1. (a) Structure of TIR1 (gray) in complex with ASK1 (dark blue), indole-3-acetic acid (IAA) (green), Aux/IAA domain II peptide (orange), and inositol hexakisphosphate (red). (b) Close-up of the auxin-binding pocket occupied by IAA (green). Surrounding TIR1 residues are shown in yellow. Dashed pink lines indicate hydrogen bonds between the carboxyl group of IAA and conserved R403. (c) Surface view of TIR1 in complex with IAA (green) and domain II peptide (orange).

2. Targeted degradation of AUX/IAA repressors

The ubiquitin-26S proteasome system for protein degradation in Arabidopsis

24 Aux/IAA proteins & diverse functions in Arabidopsis

			Genetic evidence for role	
			in auxin-mediated	
Gene	Product	Function	development	References
IAA1	IAA1	Auxin decreases protein half-life; <i>axr5-1</i> gain-of-function mutation is in degron	axr5-1 degron mutation reduces multiple auxin responses	Abel et al. 1995; Park et al. 2002; Yang et al. 2004; Zenser et al. 2001, 2003
IAA2	IAA2	Contains domain II degron	Phylogenetic relationship	Abel et al. 1995, Liscum & Reed 2002
IAA3	<u>SUPPRESSOR OF</u> <u>HY</u> 2 or <u>S</u> HORT <u>HY</u> POCOTYL 2 (SHY2/IAA3)	<i>shy2-1, -2, -3, -6</i> mutations are in degron	<i>sby2-1, -2, -3, -6</i> degron mutations reduce multiple auxin responses	Abel et al. 1995, Kim et al. 1996, Reed 2001, Reed et al. 1998, Soh et al. 1999, Tian & Reed 1999, 2003
IAA4	IAA4	Pea ortholog shows rapid turnover in vivo	Phylogenetic relationship	Abel et al. 1994, 1995; Liscum & Reed 2002
IAA5	IAA5	Contains domain II degron	Phylogenetic relationship	Abel et al. 1995, Liscum & Reed 2002
IAA6	SUPPRESSOR OF HY1 (SHY1/IAA6)	Pea ortholog shows rapid turnover in vivo; <i>sby1-1</i> mutation is in degron	<i>shy1-1-stabilizing mutation</i> reduces multiple auxin responses	Abel et al. 1994, 1995; Kim et al. 1996; Ramos et al. 2001; Reed 2001
IAA7	<u>AUXIN</u> <u>RESISTANT 2</u> (AXR2/IAA7)	Auxin decreases protein half-life; protein can interact with TIR1; <i>axr2-1</i> mutation is in degron; <i>axr2-1</i> mutation abolishes protein interaction with TIR1 and increases protein half-life	<i>axr2-1-</i> stabilizing mutations reduce multiple auxin responses	Abel et al. 1995, N. Dharmasiri et al. 2003, Gray et al. 2001, Nagpal et al. 2000, Timpte et al. 1994
IAA8	IAA8	Protein shows rapid turnover in vivo; contains domain II degron	Phylogenetic relationship	Abel et al. 1995, Dreher et al. 2006, Liscum & Reed 2002
IAA9	IAA9	Protein shows rapid turnover in vivo; contains domain II degron	RNAi-reduced levels in tomato increase sensitivity to auxin in multiple developmental processes	Abel et al. 1995, Dreher et al. 2006, Liscum & Reed 2002, Wang et al. 2005
IAA10	IAA10	Contains domain II degron	Phylogenetic relationship	Abel et al. 1995
IAA11	IAA11	Contains domain II degron	Phylogenetic relationship	Abel et al. 1995, Liscum & Reed 2002
IAA12	BODENLOS (BDL/IAA12)	<i>bdl</i> mutation is in degron	<i>bdl</i> degron mutation reduces multiple auxin responses	Abel et al. 1995; Hamann et al. 1999, 2002; Liscum & Reed 2002
IAA13	IAA13	Contains domain II degron	Degron mutant transgene impairs auxin-related development	Abel et al. 1995, Weijers et al. 2005
IAA14	SOLITARY ROOT (SLR/IAA14)	<i>sh-1</i> mutation is in degron	<i>slr-1</i> degron mutation reduces multiple auxin responses	Abel et al. 1995; Fukaki et al. 2002, 2005; Vanneste et al. 2005
IAA15	IAA15	Contains domain II degron	Phylogenetic relationship	Liscum & Reed 2002
IAA16	IAA16	Contains domain II degron	Phylogenetic relationship	Liscum & Reed 2002

Table 1 Aux/IAA proteins in Arabidopsis thaliana and evidence for their roles in auxin-mediated development

Table 1 (Continued)

Gene	Product	Function	Genetic evidence for role in auxin-mediated development	References
IAA17	AUXIN RESISTANT 3 (AXR3/IAA17)	Auxin decreases protein half-life; protein can interact with TIR1; <i>axr3</i> mutations are in degron and increase protein half-life	<i>axr3-1</i> and <i>-3</i> degron mutations reduce multiple auxin responses	N. Dharmasiri et al. 2003 Gray et al. 2001, Leyser et al. 1996, Ouellet et al 2001, Overvoorde et al. 2005, Rouse et al. 1998
IAA18	IAA18	iaa18-1 mutation is in degron	<i>iaa18-1</i> degron mutation reduces multiple auxin responses	Reed 2001
IAA19	MASSUGU 2 (MSG2/IAA19)	<i>msg2-1</i> to -4 mutations are in degron	<i>msg2-1</i> to -4 degron mutations reduce multiple auxin responses	Liscum & Reed 2002, Tatematsu et al. 2004
IAA26	Phytochrome interacting protein 1 (PAP1/IAA26)	Contains domain II degron	Phylogenetic relationship	Liscum & Reed 2002
IAA27	Phytochrome interacting protein 2 (PAP2/IAA27)	Contains domain II degron	Phylogenetic relationship	Liscum & Reed 2002
IAA28	IAA28	Auxin decreases protein half-life; <i>iaa28-1</i> mutation is in degron	<i>iaa28-1</i> degron mutations reduce multiple auxin responses	Dreher et al. 2006, Rogg et al. 2001
IAA29	IAA29	Contains domain II degron	Phylogenetic relationship	Liscum & Reed 2002
IAA31	IAA31	Auxin decreases protein half-life; imperfect conservation of domain II correlates with a half-life longer than that of other Aux/IAAs in vivo	Phylogenetic relationship	Dreher et al. 2006, Liscum & Reed 2002

(Continued)

Figure 7

The evolution of the auxin response pathway, showing the distribution of genes encoding TIR1/AFB, Aux/IAA, and ARF proteins in published plant genomes for several plant species. These species represent eudicots (*Arabidopsis*), monocots (rice), mosses (*Physcomitrella*), liverworts (*Marchantia*), and green algae (*Spirogyra*, as an example of charophytes). The tree on the left-hand side indicates the divergence order but is not drawn to scale. Protein abbreviations: ARF, AUXIN RESPONSE FACTOR; Aux/IAA, AUXIN/INDOLE-3-ACETIC ACID; TIR1/AFB, TRANSPORT INHIBITOR RESISTANT 1/AUXIN SIGNALING F-BOX.

3. Selective activation of genes by ARF binding to auxin responsive promoters

RESEARCH ARTICLE

Auxin-Mediated Transcriptional System with a Minimal Set of Components Is Critical for Morphogenesis through the Life Cycle in Marchantia polymorpha

С

Hirotaka Kato¹, Kimitsune Ishizaki^{1,2}, Masaru Kouno¹, Makoto Shirakawa¹, John L. Bowman^{3,4}, Ryuichi Nishihama¹, Takayuki Kohchi¹*

PLOS Genetics | DOI:10.1371/journal.pgen.1005084 May 28, 2015

Composite and simple auxin responsive elements (AREs)

The protein structure of ARFs.

DBD, DNA-binding domain; CTD, C-terminal dimerization domain; MR, middle region; RD, repression domain; AD, activation domain;

4. Recruitment of protein co-factors for maintenance of gene expression

topless (tpl) mutant

Recognition of composite AuxREs and recruitment of tetrameric TPL/TPR corepressors

Recruitment of Switch/Sucrose Non-Fermenting (SWI/SNF) and Histone Acetyl Transferase (HAT) complexes for remodelling chromatin

Summary of the developmental processes where auxin biosynthesis and polar auxin transport have been shown to be required

Figure 1. Different auxin biosynthesis pathways, showing a: the postulated tryptophan (Trp)-independent pathway and the four main branches of Trp-dependent synthesis via, b: indole-3-acetamide, c: IPA, d: tryptamine or e: indole-3-acetaldoxime. The positions of enzymes encoded by genes that result in a phenotype when mutated are shown.

Auxin conjugation and degradation

Figure 2. A summary of the main storage and degradation pathways known for IAA.

BODENLOS (IAA12) and MONOPTEROUS (ARF5) are required for the establishment of the root apical meristem during embryogenesis

Origin of the root apical meristem during embryogenesis

Fig. 1. Arabidopsis embryo development. Surface view and longitudinal cross-sections of a developing Arabidopsis embryo. Cells are coloured according to their lineage, as indicated in the key. Based on data from Yoshida et al. (2014).

Immunolocalisation of PIN7 in Arabidopsis embryos

Immunolocalisation of PIN4 in Arabidopsis embryos

Auxin triggered gene expression during embryogenesis

Figure 4. Hypophysis specification in the globular-stage embryo. MP activity is required non-cell-autonomously in the provascular cells (light blue) adjacent to the uppermost suspensor cell (pink) to specify this cell as hypophysis. In the provascular cells, high auxin levels release MP from its inhibitor, the Aux/IAA protein BDL, and the corepressor TPL. Subsequently, MP induces the expression of *PIN1* in the provascular cells, resulting in auxin transport to the uppermost suspensor cell. MP also promotes the transport of a hypothetical signal (S) to the future hypophysis. Here, auxin releases another yet unidentified ARF from a so far unknown Aux/IAA protein to elicit an auxin response that converges with S to specify hypophysis fate.

Mechanism for auxin-mediated specification of the root apical meristem

Cell-cell communication during specification of the root apical meristem

Regulation of gene expression by auxin

- 1. Intracellular binding of auxin
- 2. Targeted degradation of Aux/IAA repressors
- 3. Selective activation of genes by ARF binding to auxin responsive promoter elements
- 4. Recruitment of protein co-factors for maintenance of gene expression
- 5. Cell-cell communication

