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Plant cells are immobilised.
Morphogenesis is driven by cell division and elongation.







Feedback regulation of morphogenesis
(i) Cell interactions regulate gene expression
(i) Gene expression regulates cell proliferation
(iii) Feedback results in self organisation and morphogenesis

gene expression

cellular anatomy ™|~
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Empirical rules describe cell division

1. Hofmeister’s rule (1863)
Cell plate formation normal to the growth axis.

2. Sachs’ rule (1878)
Cell plate formation at right angles to existing walls.

3. Errera’s rule (1888)
Cell plate of minimal area for cutting the volume of the

cell in half. i s /
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Preprophase bands of microtubules mark planes of cell division
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Plant cell walls are a composite structure

Nature Reverws | Moleouiar Ceb Bialogy
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The tangled-1 mutation alters cell division orientations throughout maize leaf

development without altering leaf shape
LG Smith, S Hake and AW Sylvester
USDA/UC Berkeley Plant Gene Expression Center, Albany, CA 94710, USA.
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Physical forces affect the orientation of cell division
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Nature Reviews | Molecular Cell Biology



Mapping cell geometry
oscillation of MinD:GFP within the bacterial cell

Hans Meinhardt

http://www.eb .tuebingen.mpg.de/departments/former-
departments/h-meinhardt/web_ecoli/mincd.htm




Autonomous regulation of cell division
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Model for the regulation of cell division:

(A) Cell activity influences cell and walls physical properties.
(B) Tissue growth constrains cell expansion and shape during development.
Cells then simply need a mechanism for sensing their own size and shape to allow

the correct partitioning during division.



Cellular automata models for plant morphogenesis
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egrowth rate
sanisotropy
egrowth axis
«division axis
turgor

*morphogen rates

set divisiontype $axial
set growthtype $lateral
set growthrate 1.0

set turgor 30.0

set anisotropy 0.9

if { $V > $targetV }
{

}

divide

physical
model

genetic
model
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“Canalisation”

Patterning processes emerge from local cellular interactions






Jerusalem artichoke (Helianthus tuberosus)




Sut1 sucrose transporter gene expression in leaves and germinating potato tubers
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Selenga River delta




Dan Parker







Secret Life of Chaos
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Turing, 1952

[2)e Chemical Basis of Morphogenesis
(Phil. Trans. Roy. Soc. London)

Diffusion-driven instability
Under appropriate conditions, a spatially
homogeneous equilibrium of a chemical
reaction can be stable in the absence of
diffusion and unstable in the presence of
diffusion.

Such a reaction is capable of exhibiting
spatially inhomogeneous equilibria, i.e.,
patterns.

Diffusion-driven instability might explain
some of the complex dynamics of nature.

Alan Mathison Turnng on election to Fellowship of the Roval Society, 1951




Autocatalysis

Degradation Diffusion

Fig. 4.2 How an activator—inhibitor scheme works. The activator
generates more of itself by autocatalysis, and also activates the inhibitor.
The inhibitor disrupts the autocatalytic formation of the activator.
Meanwhile, the two substances diffuse through the system at different
rates, with the inhibitor migrating faster.

after Gierer & Meinhardt, 1972
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Modification of Turing patterns during growth
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Origin of Directionality
in the Fish Stripe
Pattern

Hiroto Shoji,1 Atsushi Mochizuki,1 Yoh
lwasa,1 Masashi Hirata,2,3 Tsuyoshi
Watanabe,2,4 Syozo Hioki,s

and Shigeru Kondo2,3*



Turing-inspired systems for self-organisation

The activator generates more of itself through positive feedback, which also activates the inhibitor. The inhibitor disrupts
autocatalytic formation of the activator. The substances move through the medium at different rates.
Noise and diffusion produce spontaneous local patterns of activation and lateral inhibition.



Compound Turing systems

Jonathon McCabe “Bone Music” http://vimeo.com/jonathanmccabe
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Jerusalem artichoke (Helianthus tuberosus)







Visible Spirals: Parastichies

In a spiral lattice, the eye tends to connect
Nearest points into spirals. These spirals
are called pavastichies. In the
figure, the nearest point to 0
1S 13; the next nearestis 8.

There are two sets of
parastichies winding
in different
directions. In the
figure, 0,8,16...
winds in one
direction and 0, 13,
26 ... inthe other.

The number of
parastichies in each
direction Is the
difference between a
point e.g, 7, and its néarest
nesghbor (20) and next
nearest neighbor (15). Here,
there are 15 7 = 8 parastichies in
one setand 20+ 7 = 13 in the other,

Spiral lattices are classified according to the number
of parastichies in each set Thus lattice is (B, 13).



Plant organs and the Fibonacci series

3 petals: lily, iris

4 petals: Arabidopsis, fuchsia - decussate arrangement, not spiral.
5 petals: buttercup, wild rose, larkspur, columbine (aquilegia), pinks
8 petals: delphiniums

13 petals: ragwort, corn marigold, cineraria, some daisies

21 petals: aster, black-eyed susan, chicory

34 petals: plantain, pyrethrum

59, 89 petals: michaelmas daisies, the asteraceae family







Auxin triggered outgrowth of shoot primordia









Figure 50
Fibonacci spirals observed in an experiment with electrically charged oil drops.



Emergence of patterns at microscopic scales




Modern crop plants are derived
from their natural ancestors by
thousands of generations of
selection and breeding.

What if we could reprogram the
distribution of existing cell
types in living systems?

Synthetic Botany. Boehm & Pollak et al.
Cold Spring Harbor Perspectives in Biology, (2017)
doi: 10.1101/cshperspect.a023887
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S. pimpinellifolium

2 locules

Ic

3-4 locules

fas

>6 locules

Admixture of loci
controlling locule number

Broad range of shape diversity
S. lycopersicum



Recreating known fruit size QTLs in tomato with CRISPR-Cas9
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Hashing the SICLV3 promoter using CRISPR-Cas9

floral organ number

SICLV3 expression fruit size
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A collection of engineered SICLV3 promoter alleles
provides a continuum of locule number variation
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cell proliferation > >

genetic & differentiation
interactions

tissue
physics
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cell wall strain
& geometry

cell division
& elongation

cytoskeleton &
cell polarity

Multi-scale view of plant growth. (i) Interaction between cytoskeletal elements and local cell wall determinants, strain or geometry regulates the
polarity of cell division and elongation. (ii) Genetic interactions between neighbouring cells trigger gene expression, cell proliferation and
differentiation. (iii) Cellular growth results in physical strains that are transmitted across tissues and constrain cell growth. (iv) Physical constraints
on cell size and shape regulate timing and orientation of individual cell divisions and guide morphogenesis.






