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Charles and Francis Darwin’s
experiments on signalling during
plant phototropism

The Darwins’ experiment. (#) Young grass seedlings normally
bend toward the light. (4) The bending () did not occur when the
tip of a seedling was covered with a lightproof cap (2), but did
occur when it was covered with a transparent one (3). When a
collar was placed below the tip (4), the characteristic light
response took place. From these experiments, the Darwins
concluded that, in response to light, an “influence” that caused
bending was transmitted from the tip of the seedling to the area
below, where bending normally occurs.



Frits Went’s experiment. () Went

Demonstration of auxin removed the tips of oat seedlings and
. I; . I . put them in agar, an inert, gelatinous
signalinginp ant tissues substance. (2) Blocks of agar were then

placed off-center on the ends of other
oat seedlings from which the tips had

been removed. (3) The seedlings bent
away from the side on which the agar
block was placed. Went concluded that
the substance that he named zuxin
promoted the elongation of the cells
and that it accumulated on the side of
an oat seedling away from the light.
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Auxin and apical-basal polarity:

Apical-basal polarity and the

coordination of indeterminate
growth and branching in plants
IS maintained by traffic of
growth regulators.

These are not passive
gradients, but are the product of
active cellular transport.



The pathway of auxin traffic through the plant is
determined by the activities of influx and efflux carriers.

S

HA

Anionic trapping \ l V




lq."‘ll""l)

IAA

I-NAA

Auxin influx carrier:

AUXT

The aux1 mutant
confers resistance to
the herbicide 2,4-D, an
auxin mimic
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PIN1 auxin efflux carrier




PIN1 is plasma membrane localised
with a polar distribution within the cell
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Feedback through regulated expression and localisation of PIN genes
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Asymmetric localisation of the PIN1 auxin efflux transporter is a

dynamic process and requires the maintenance of polar secretion.
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Brefeldin A treatment causes rapid loss of PIN1 localisation.
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PIN1 plasma membrane
localization
in untreated roots

PIN1 internalizaton
after BFA treatment

Recovery of PIN1 plasma
membrane localization
after washout of BFA
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How is auxin flux or accumulation
converted to states of gene expression?



OVERVIEW:

Regulation of gene expression by auxin

Intracellular binding of auxin
Targeted degradation of Aux/IAA repressors

Selective activation of genes by ARF binding to

auxin responsive promoter elements

Recruitment of protein co-factors for maintenance

of gene expression and chromatin remodelling




1. Intracellular binding of auxin

SCF complex
SKP/ASKT
Cullin/CUL1
F-Box/TIR1




TIRT-mediated mediated binding of auxin

response




Figure 2

Auxin perception by the F-box protein TIR1. () Structure of TIR1 ( gray) in complex with ASK1 (dark blue),
indole-3-acetic acid (TIAA) ( green), Aux/IAA domain II peptide (orange), and inositol hexakisphosphate (red).

(b) Close-up of the auxin-binding pocket occupied by IAA (green). Surrounding TIR1 residues are shown in

yellow. Dashed pink lines indicate hydrogen bonds between the carboxyl group of IAA and conserved R403.
(c) Surface view of TIR1 in complex with IAA ( green) and domain II peptide (orange).



TIR1-mediated ubiquitination of AUX/IAA proteins

response




2. Targeted degradation of AUX/IAA repressors
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Figure 7
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The evolution of the auxin response pathway, showing the distribution of genes encoding TIR1/AFB,
Aux/TAA, and ARF proteins in published plant genomes for several plant species. These species represent
eudicots (Arabidopsis), monocots (rice), mosses (Physcomitrella), liverworts (Marchantia), and green algae
(Spirogyra, as an example of charophytes). The tree on the left-hand side indicates the divergence order but is
not drawn to scale. Protein abbreviations: ARF, AUXIN RESPONSE FACTOR; Aux/TAA,
AUXIN/INDOLE-3-ACETIC ACID; TIR1/AFB, TRANSPORT INHIBITOR RESISTANT 1/AUXIN

SIGNALING F-BOX.
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3. Selective activation of genes by ARF binding to auxin responsive promoters
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CpARF3, 7, 10, 16

CpARFI, 4, 11

| MR SPGL-rich RD |
CpARF2, 3, 17

CpARF6

The protein structure of ARFs.
DBD, DNA-binding domain; CTD, C-terminal dimerization domain; MR,
middle region; RD, repression domain; AD, activation domain;
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4. Recruitment of protein co-factors for maintenance of gene expression
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4x TPL/TPR corepressors

Recognition of composite AuxREs and recruitment of tetrameric TPL/TPR corepressors
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Recruitment of Switch/Sucrose Non-Fermenting (SWI/SNF) and Histone Acetyl
Transferase (HAT) complexes for remodelling chromatin



Regulation of gene expression by auxin

Intracellular binding of auxin

Targeted degradation of Aux/IAA repressors
Selective activation of genes by ARF binding to
auxin responsive promoter elements

Recruitment of protein co-factors for maintenance
of gene expression

Cell-cell communication

and
Environment
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Auxin biosynthesis Polar auxin transport
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