CDB Part IB Plant Development

Lecture 3

Regulation of root initiation and growth by auxin

Jim Haseloff Department of Plant Sciences (haseloff.plantsci.cam.ac.uk/education)

Different conditions faced by algae and plants

Supportive medium (water) Photosynthesis in most cells Direct access to minerals and water Non supportive medium (air) No photosynthesis in root cells Aerial parts not in direct contact with minerals and water

Early plant fossils, *Rhynie chert* (~400 Mya)

Rhynia sp. (~400 Mya)

Niccolò Caranti, (MUSE) Trento

Evolution of root systems

Origin of the root apical meristem during embryogenesis

Auxin flow and accumulation regulates patterning in the embryo

Changes in PIN1 in distribution during Arabidopsis embryogenesis

Immunolocalisation of PIN7 in Arabidopsis embryos

Immunolocalisation of PIN4 in Arabidopsis embryos

Auxin triggered gene expression during embryogenesis

DR5::GFP

Mutations that affect auxin traffic or perception give rise to plants with altered body plans.

Fig. 1. *gnom* mutant phenotype. (A, C) Wild-type, (B, D) *gnom*. (A, B) Seedling, (C, D) One-cell stage of embryogenesis. Modified after (Mayer et al., 1993).

wild type

gnom mutant

Immunolocalisation of PIN1 in Arabidopsis embryos

BODENLOS (IAA12) and MONOPTEROUS (ARF5) are required for the establishment of the root apical meristem during embryogenesis

Cell-cell communication during specification of the root apical meristem

f Hypophysis determination

Mechanism for auxin-mediated specification of the root apical meristem

Continued growth of shoot and root meristems produces the adult plant body

Arabidopsis root tip

Indeterminate growth of the Arabidopsis root meristem

Family of PIN genes in the Arabidopsis root

pin2 mutant seedlings show loss of gravitropism in the root

Fig. 3. Mutations in the *AtPIN2* gene alter root growth and gravitropism. Homozygous 5-day-old Columbia-0 wild-type seedlings (A) and *Atpin2::En701* mutant seedlings (B) were grown vertically on agar plates.

Localization of AtPIN2p in 4-day-old Arabidopsis seedling root tips.

PIN2 localisation

PIN3 localisation

PIN4 localisation

Figure 1 | **Mesoscopic model for polar auxin transport. a**, The *Arabidopsis* root. DZ, differentiation zone; EZ, elongation zone; MZ, meristematic zone.

Grieneisen et al.

Supplementary Movie 1

Establishment of the auxin maximum in a root receiving shoot-derived auxin influx (simulation of Fig. 2b). Relative auxin concentrations according to the colour bar of Fig. 2d. Scale bar 100 μ m.

-00:00

Modelling of auxin dynamics in the root

Gravity and PIN3 mediated redirection of auxin flow at the root tip regulates the direction of root growth

© 1996 Current Biology

Before gravistimulation

30 min gravistimulation

Gravitropic relocalisation of PIN3 protein in the Arabidopsis root columnella

PID/WAG-mediated phosphorylation of the Arabidopsis PIN3 auxin transporter mediates polarity switches during gravitropism. Peter Grones, Melinda Abas, Jakub Hajný, Angharad Jones, Sascha Waidmann, Jürgen Kleine-Vehn & Jiří Friml. <u>Scientific Reports</u> 8: 10279 (2018)

Auxin stimulates growth in the shoot, so the stem curves upwards.

If a plant is laid on its side, auxin gathers in the lower half of the stern and root. Auxin slows growth in the root, so the root curves downwards.

Feedback-regulated traffic of auxin coordinates polar coordination of plant cell growth

"Canalisation" of auxin flow

It provides both long-range coordination of plant architecture, and a short-range mechanism for controlling individual cell fates.

- Embryo patterning
- Meristematic growth
- Vascular development

Elaboration of vascular cell fates in developing Arabidopsis leaves

ATHB8:GUS expression

Inhibition of auxin transport by application of NPA

Defects in auxin transport or response affect patterning of the plant vascular system

Current Opinion in Plant Biology

"Canalisation" of auxin flow

Coleus stem: needle puncture of vascular trace

Coleus stem: differentiation of new xylem vessels in response to local wounding

Traffic of auxin plays a key role in coordination of whole plant growth

