Extended material: Crop traits (not directly examinable)

NST PMS 1B

~400,000 plant species (http://www.theplantlist.org)

3 crop species (rice, wheat and maize) provide 60% of all calories and 54% of all protein in human food

120 cultivated plant species

Wild watermelon

Originated in North Africa, used as a primitive water carrier. Selection for sweeter taste was linked to pink colour of the flesh.

Modern watermelon

Over time, humans have bred watermelons to have a **bright red**, juicy interior. The **seeds are often removed** by preventing the plants from being fertilized by pollination.

Wild banana

The first bananas may have been cultivated at least **7,000 years ago** in what is now Papua New Guinea, and were **stocky and hard,** with large, tough **seeds** throughout the fruit's interior.

Modern banana

Today's tastier bananas are **hybrids** of two wild banana varieties, **Musa acuminata** and **Musa balbisiana.**

Wild eggplant

Eggplants once came in a wide array of shapes and colors, from **blue to yellow**, and some were **round** rather than oblong. Primitive eggplant varieties had a **spine** where the modern plant's stem connects to its flowers.

Modern eggplant

Selective breeding has made the **spine disappear** and left us with the **oblong purple** vegetable we're familiar with.

Wild carrot

The first carrots were likely cultivated around the 10th century in Asia Minor and were either white or purple with thin, forked roots and a strong flavor.

Modern carrot

Carrots today are large, bright orange, and tasty.

Major differences between maize and teosinte map to few loci

Table 1.	List of principal traits distinguishing maize and t	eosinte

Trait	Description
CUPR (cupules per rank)	Number of cupules in a single rank
DISA (disarticulation score)	Tendency of ear to shatter (1-10 scale)
GLUM (glume score)	Hardness and angle of outer glume (1-10 scale)
LBIL (lateral branch internode)	Average length of internodes on the primary lateral branch
LIBN (branch number)	Number of branches in primary lateral inflorescence
PEDS (pedicellate spikelet score)	Percentage of cupules lacking the pedicellate spikelet
PROL (prolificacy)	Number of ears on the primary lateral branch
RANK (rank)	Number of rows of cupules
STAM (staminate score)	Percentage of male spikelets in primary lateral inflorescence

Crop traits

Traits that have been selected for by humans include:

- Determinate growth habit (flowering occurs at the top of the plant, preventing further growth)
- Synchronous ripening, shorter maturity
- Lower content of bitter tasting and harmful compounds
- Reduced sprouting (higher seed dormancy)
- Improved harvest index (the proportion of the plant which is used); larger seed or fruit size
- Elimination of seeds, such as in banana
- Retention of mature seed on the plant (loss of grain shattering)

Many of these traits are multigenic and affect the shape and function of plant tissues and organs. If we want to engineer new crop traits in the future, we will need to understand the way DNA code is able to regulate plant growth and form.

BBC Natural History Unit

a des

pitcher plant

Plant cells are immobilised. Morphogenesis is driven by cell division and elongation.

Cells are the common unit for gene expression

Self-organisation is driven by cellular interaction and feedback

Cellular automata models for plant morphogenesis

Simple rules describe plant cell division

1. Hofmeister's rule (1863) Cell plate formation normal to the growth axis.

2. Sachs' rule (1878)
Cell plate formation at right angles to existing walls.
3. Errera's rule (1888)
Cell plate of minimal area for cutting the volume of the

cell in half.

Fig. 225.

Multi-scale view of plant growth.

The tangled-1 mutation alters cell division orientations throughout maize leaf development without altering leaf shape

LG Smith, S Hake and AW Sylvester

Development. 122:481-9 (1996).

DNA modification is our tool for reprogramming agronomic characters, but many traits are morphological or physiological and scaled across whole tissues and organs. Our ability to manipulate DNA is increasing rapidly: can we reprogram large scale cellular systems for new crop traits in the future?

Cabbage

Brussels sprouts

Cauliflower

Are these plants related?

Crops derived from wild mustard (Brassica oleracea)

Figure 1. Convergent domestication. Convergent phenotypic changes are frequently observed in many different crops because systematic human cultivation often brings about similar demands. Attempts to maximize yield cause selective pressure for an increase in size and number of edible plant parts on the one hand and for a decrease in natural seed and fruit dispersal mechanisms to reduce yield loss on the other hand. Shifts in cultivation area often require changes in day length dependence or in the vernalization requirement and a reduction in seed dormancy is needed for synchronous germination. Small plants with a determinate growth habit are often selected because they are more robust, have a better yield to overall biomass ratio, and are better suited to mechanical harvesting methods. Finally, satisfying esthetic preferences often drives convergent adaptations, a prominent example being changes in color. Stylized examples of the major angiosperm plant lineages from which current crops originated are shown (eudicot, left; monocot, right) featuring traits of typical wild species. Characters that convergently evolved in various domesticated crops are depicted in circles.

Convergent phenotypic changes during domestication

Oilseed rape and Canola are derived from a cross between *Brassica oleracea* and *Brassica rapa*

Brassica napus

Brassica napus seed have a 45% oil content

Canola are varieties of oilseed rape (B. napus) with low erucic acid content

Crop domestication

An example of a multicellular trait: reduction of seed shatter and improved yield at harvest

Pod Shatter at harvest of *Brassica rapa* (rapeseed)

Seed pods are often fragile in the weeks leading up to harvest. During this stage seed pods go through a process of dehiscence (splitting open), commonly known as pod shatter. This process can result in:

- substantial seed loss (up to 25%)
- decrease in yield;
- greater number of volunteers in next season's crop.

In adverse conditions prior to harvest the potential loss can be as high as 50%

Brassica species are closely related to the model plant Arabidopsis.

Current Opinion in Plant Biology

Arabidopsis also bears its seed in siliques (seed pods) which are anatomically similar to those of rapeseed plants.

left: Arabidopsis thaliana right: Capsella rubella (V=valve, r=replum, S= stigma)

Arabidopsis fruit opening

Specialised cells and valve dehiscence in Arabidopsis

tensions

replum

lignified margin layer separation layer

Genetically identified regulators of seed shatter

Species	Gene(s)	Gene category	Molecular function	Phenotypic effect
Arabidopsis thaliana	SHATTERPROOF1/2	Transcription factor	Transcriptional regulator (MADS)	Indehiscent pod
	INDEHISCENT	Transcription factor	Transcriptional regulator (bHLH)	Indehiscent pod
	ALCATRAZ	Transcription factor	Transcriptional regulator (bHLH)	Partially indehiscent pod
	FRUITFULL	Transcription factor	Transcriptional regulator (MADS)	Premature bursting pod
	REPLUMLESS	Transcription factor	Transcriptional regulator (homeodomain)	Partially indehiscent pod
	NST1/3	Transcription factor	Transcriptional regulator (NAC)	Indehiscent pod
	ADPG1/2	Endo-polygalacturonase	Degrade cell wall matrix	Indehiscent pod
	GA3ox1	Catalytic enzyme	GA biosynthesis	Partially indehiscent pod
Glycine max	SHATTERING1-5	Transcription factor	Transcriptional regulator (NAC)	Indehiscent pod
	PDH1	Dirigent-like protein	Lignin biosynthesis	Indehiscent pod
Solanum lycopersicum	JOINTLESS	Transcription factor	Transcriptional regulator (MADS)	Non-shedding fruit
	MACROCALYX	Transcription factor	Transcriptional regulator (MADS)	Non-shedding fruit
	SLMBP21	Transcription factor	Transcriptional regulator (MADS)	Non-shedding fruit
	LATERAL SUPPRESSOR	Transcription factor	Transcriptional regulator (GARS)	Non-shedding fruit
Oryza sativa	Shattering4	Transcription factor	Transcriptional regulator (Myb)	Non-shattering seed
	qSH1	Transcription factor	Transcriptional regulator (homeodomain)	Non-shattering seed
	SH5	Transcription factor	Transcriptional regulator (homeodomain)	Non-shattering seed
	SHATTERING ABORTION1	Transcription factor	Transcriptional regulator (AP2)	Non-shattering seed
	Shattering1	Transcription factor	Transcriptional regulator (YABBY)	Non-shattering seed?
Sorghum bicolor	Shattering1	Transcription factor	Transcriptional regulator (YABBY)	Non-shattering seed
Sorghum propinquum	SpWRKY	Transcription factor	Transcriptional regulator (WRKY)	Non-shattering seed
Zea mays	Shattering1	Transcription factor	Transcriptional regulator (YABBY)	Non-shattering seed?
Triticum aestivum	Q	Transcription factor	Transcriptional regulator (AP2/ERF)	Free-threshing character

wildtype

Mutation of *shatterproof1* and *shatterproof2* results in loss of the lignified layer (LL) and separation layer(SL) within the dehiscence zone, and produces a shatterproof silique.

Figure 15. *SHP* expression is negatively regulated by *FUL* and *RPL.* (A) Early in development the *SHP* genes are broadly expressed in the gynoecium. At stage 10, their expression extends throughout the valve margins, replum, septum, and developing ovules. Weak expression is also seen extending into the edges of the valves. (B) At stage 12, *SHP* expression is limited specifically to the valve margins. *SHP* also continues to be expressed in the developing ovules. (C) *SHP* continues to be expressed in the developing ovules. (C) *SHP* continues to be expressed in the valve margins through stage 17. (D) Ectopic expression of *FUL* in *35S::FUL* fruit is sufficient to block expression of *SHP* in the valve margins. (E) In *rpl* mutants, *SHP* continues to be expressed in the replum indicating that *RPL* is required to negatively regulate *SHP* expression in the replum. *SHP* is ectopically expressed throughout the valves indicating that *FUL* is required to negatively regulate *SHP* expression in the valves. (H) In *rpl ful* double mutants *SHP* expression completely surrounds the fruit.

Mutations of the *indehiscent genes ind-1* and *ind-2* produce shatterproof siliques.

Simplified genetic model for the development of the dehiscence zone in Arabidopsis.

The diagram shows a transverse section across a silique. Valves are shown green, lignified zones: pink, separation layer: blue and replum: yellow.

Fruitful (FUL) and Replumless (REP) limit action of Shatterproof (SHP) to the valve margin. SHP induces Indehiscent (IND) and Alcatraz (ALC) to trigger formation of lignified cells and the separation layer in the dehiscent zone.

Cristina Ferrándiz and Chloé Fourquin, *Journal of Experimental Botany*, Vol. 65, No. 16, pp. 4505–4513, 2014

Strategy for shatter-resistant pods

The stability of the canola pods can be adjusted using reverse genetics. Researchers generate chemical changes (mutations) in the genotype. The candidates with an IND mutation are backcrossed with the original plant. The canola plants that result from this cross have stronger seed pods. The seeds stay in the pod and do not fall out when buffeted by the wind.

InVigor

InVigor [®] L140P			
Yield	100% of the checks (InVigor 5440 & Pioneer® 45H29) in 2011/2012 WCC/RRC Co-op trials		
Days to Maturity	0.5 days earlier than the average of the checks		
Growing Zones	All		
Lodging Resistance	Strong		
Height	Short–Medium		
Blackleg Rating	R (Resistant)		
Agronomic Trait	LibertyLink®, Pod Shatter Reduction		
Overall Comment	The patented pod shatter reduction technology of InVigor L140P offers growers excellent yield protection with greater harvest flexibility. Stronger pod seams and stems firmly adhere to the plant longer and allow seeds to fully mature safely within the pod until harvest. This allows growers to straight cut their canola and maximize yield. In the Demonstration Strip Trial program it showed an 8% yield advantage over normal swath timing		

BAYER

InVigor 140P

Figure 3. Important Historical Milestones in Plant Transformation.

Since its beginning in 1977, the pace of crop transformation technology development has not been linear. In recent years, the genome editing revolution begs for crop transformation improvements to enable greater food security.

Hps://doi.org/10.1038/s41477-018-0299-s	plants	news & views			
		CROP ENGINEERING			
apid improvement of do	mestication traits in an	The taming of t	he shrub		
rphan crop by genome e	diting	Can genomics, functional analysis a acriculture?	Can genomics, functional analysis and genome editing help build the bridge between orphan crops and modern acriculture?		
chary H. Lemmon ^{®1} , Nathan T. Reem ^{®25} , Justin E	alrymple ¹⁵ , Sebastian Soyk ¹⁵ ,	Luca Comai			
nome editing holds great promise for increasing crop ductivity, and there is particular interest in advancing eding in orphan crops, which are often burdened by unde-	for gene editing, including the absence of reference genomes, lim- ited information on gene content and function, and several archi- tectural and fruit development traits that differ from the tornato	he world's food supply depends on a few crop species, such as rice, wheat, maize, soy and potato, on which research and breeding efforts are	(Fig. 1) ³ with alleles of other genes that make the fruit hard to bruise and rich in solids ³ . The availability of genomic information and efficient genome editing tools	of genomics and gene editing of just a sn number of loci. The study, as successful as it was, also demonstrates the challenges	
ble characteristics resembling wild relatives. We developed iomic resources and efficient transformation in the orphan anaceae crop 'groundcherry' (Physalls pruinosa) and used stered regularly interspaced short palindromic repeats USPR)-CRISPA-associated protein-9 nuclease (Cas9)	(Fig. 1). However, considering its phylogenetic relationships with the tomato, its diploid genome and the fact that key developmen- tal and productivity genus have similar functions across model Solancera", we hypothesized that Physails orthologues of select tomato demestication and improvement genes could be modified	concentrated. In addition, small farmers grow a variety of orphan crops, a set of species that are tasty, nutrificious and well adapted, but mostly unsaited for intensive arguiculture because of their wild	represents a novel opportunity for crop domestication and improvement ⁽²⁾ . Wild species and unimproved orphan crops can now, in theory, be modified rapidly and in a targeted manner, to provide	that 'domesticators' will encounter. Domesticating an orphan crop plant requires multiple tools: a well elacidated genome sequence, including the understanding of paralogue structure	
MSPR-Cas9) to mutate orthologues of tomato domestica- n and improvement genes that control plant architecture, wer production and fruit size, thereby improving these major ductivity traits. Thus, translating knowledge from model so enables rapid creation of targeted allikii diversity and	through editing for immediate improvements. A major obstacle for CRISPR-Cas9 plant genome editing is lack of efficient tissue culture and transformation methodologies ² . For editing of <i>P</i> , praionsa to be realized, we developed Agrobacterisom tumefacion-mediated transformation modeled after our tornato	characteristics. In this issue of Nature Plant Lemmon et al. edit the genome of orphan crop Physicali prainata (groundcherry) to explore domestication of this species. Seecifically ther modify eners whose	 novel and improved crops. Consider groundcherry (P. prainosa), a solanaceous species that produces a small, but tasty berry. A garden curiosity[*], groundcherry cannot be grown on an articultural scale 	and gene expression, and a delivery system for genome editing, the simplest being a transformation system. Just as important is the ability to predict what tararted modification will achieve the id	
Fel breeding gérmplasm in distantly related orphan crops. There has been extensive discussion on leveraging genome- ing technologies to improve stuple crops', yet their application regionally important plants grown for subsistence purposes is ally exciting, exercially in developing countries. Such 'orphan ally exciting, exercially in developing countries. Such 'orphan	methodology (Supplementary Methods), and evaluated editing by targeting the orthologue of the tomato leaf development gene SAGOT (where SL' relates to S. lycopersicam). This was previ- ously used to test (CRLSPR-Cas9 in the tomato, because mutations result in conscisuous narrowing of the kayes and floral organs".	orthologues control domestication traits in the close relative, tomato. The authors' results domestrate both the power of this approach and the importance of identifying mechanisms and over traverst. Thanks to	because of wild characteristics such as sprawling habit, small, husked fruit and strong fruit abscission. The growth habit and production of small fruits unsuited for anrivative resemble the characteristics	phenotype. Target identity can be inferre by understanding the domestication hist of crops closely related to the orphan cro Nonetheless, the structure of gene networ varies according to mode number type a	
pi are relatively unknown and typically have not experienced make selection for domestication and improvement. Thus, han crops are less productive, unterable at larger agricultural les, and benefit less from basic research: Genome-editing tech- ories: ourb as the broadly uncreasful churtered resultive inter-	First-generation (T ₄) plants were chimeric for Ppr-AGO7 mutations (where 'Ppr' relates to P prainou) and, like tornato G-ago? ³⁰ chime- tric T ₄ plants (where CR indicates CRSPP-C-ass ³ -indicated), the leaves and petals were narrower than in the wild type (Supplementary Fig 1 ab) indication of Fioster tofficien in the around there	continuous and approximately and approximately approximate	of the wild currant to mits that the head pimpinelljolium, which was domesticated to l become tomato. Lemmon and co-workers saw an opportunity: would modification of the become to many formation of the same to be the	connections". A change yielding the desi outcome in one species may be too sever insufficient or completely devoid of effec in another. Breeders and geneticists have	
6.1. Source palindromic repeats (CRISPR)-CRISPR-associated tein-9 nuclease (Cas9) (CRISPR-Cas9) provide opportunities defress these deficiencies, with primary goals to increase qual- and yield, improve adaptation and expand geographical ranges	To expand Physialis genomic resources beyond a leaf transcrip- tome from the related Physialis peruvisau, which lacked orthologues of several tomato domestication and improvement generation, we generated Illumina whole-genome and RNA sequencing de novo	measures anemg the curcion of a rew, selected to; called domessication genes, played a determining role. For example, alleles at a few major loci are responsible for much of the difference between wild	or the known gene targets or tomato domestication achieve corresponding gains in this sister species? Through gene editing, they targeted repressors of the florigen pathway to increase flower numbers and	in populations can dramatically alter a mutation phenotype. This was demonstr here by the dwarfing effect of the SELF- PRUNING knockout in groundcherry, or	
starvasone, i ne solariacare namor contains many orpriar crops ingide several well-characterized model crops, such as the nato (Sadamum Jycopersicum), potato (Sadamum Inderosum) and per (Capricum annum). This strong foundation of genetic, elopmental and genomic knowledge makes the Sodanaccae an	assembous from vegetative and reproductive modes (Supprementary Methods). Analysis: "revealed 39 and 82% complete benchmarking universal single-copy orthologues for the transcriptome and genome assembly, respectively, and 12,993 orthologues of tomato genes were reconstructed with at least 90% coding sequence coverage.	teosinte and modern maize". Domestication genes have been identified in other key crop species: they control flowering and fruit development, increase harvest index (more product per landt, facilitate harvestim	 delimit flowering time, both on primary and axillary shoots. Knockout of SELF- PRUNING, a classical improvement gene that controls indeterminate versus determinate arowth in tomato, was too 	by the inability to modify primary shoot flowering by SPSG manipulation. In mar cases, a knockout may be inadequate and subtler allele may be needed instead, suc as altering promoter activity or protein	
ettent pattorm for transiating genome editing to orphan crops. We focused on the orphan crop Physiatis prainosa (ground- rry), a wild Solawaceae that is more distantly related to the auto than the pepper, and which is grown in Central and South erica for its subtly sweet berries ¹¹ . Barriers to higher produc-	With these took, our trist efforts accused on modifying ground- cherry shoat architecture to contain its weedy growth habit. In the tomato, selection for mutations in florigen flowering pathway genes allowed major improvements in plant architecture and yield ² . In particular, a classical missense mutation in the antiforigen SELF-	by inhibiting abscission of fruits, or make the final product easier to store, chew and diger." Manipulation of their traits standard as one of the great human achievements. Some traits update lack of the strategiest	severe to be useful, resulting in extreme compactness. Knockout of another florigen repressor, SP5G, resulted in increased axillary flowering, although caused no chonese to the arimum chost near the	structure. Editing promoter segments sh facilitate the production of alleles with n and useful expression properties'. Finally the accelerated domestication envisaged here new involve movinedation.	
ty and wider cultivation include a wild sprawling growth habit small -1g fruits that drop to the ground due to strong stem ciscion (Fig. 1m-g). These undesirable characteristics paral- the wild ancestor of the tomato, Schemuer piropinedijolium, for the schemuter allowed mains immergenments in these	PRUNING (SP) gene (sp ^{lann)}) provided compact 'determinate' growth that translated to a burst of flowers and fruits, threeby enabling large- scale field production". SP encodes a flowering repression that mod- ulates sympodial growth—a hallmark Solumicone and many other and that reasonic and mutations in the moments 'Re architecture user's	some trans, such as not-of-shalfering, were unknowingly sidected by Neolihit, gatherers. Other traits, such as branching and determinate growth, required keen observation and intent to save the variant.	fruit density increased. The authors next targeted the CLAVATA pathway, which regulates shoet apical meristem size by the interaction of a small peptide, CLV3, with	serve used invoive manipulation of several genes with the connected combinatorial challenge of testing many variables. In fact, it is possible that domesticated species may owe their fate in part to their	
en server som answen myser impreventents in school architecture, ver production and fruit size? (Fig. 1h=m). Although pround- rry and related <i>Physidis</i> species have the same chromosome aber as most Solanscene $(n=12)$ ', several challenges remain	pum spectso—ana mutumors in use pepper 39 offindiogie cinie a similar acceleration of sympodial cycling and short termination". We searched our groundcherry assemblies for 59 homologues and related florigen family members, and phylogenetic analysis	By increasing food availability, crop domestication has enabled the flourishing of sciences, arts and technology. While the basic chassis of our staple species is Neolithic, some improvements are recent,	its receptors (CLV1 and others). Knockout of CLV1 resulted in increased flower meristern size, additional flower organs and conversion from two-locule to a larger, three-locule fruit. These manipulations	relative case of genetic manipulation: if key domestication traits were monogenic and variable in the ancestor, they would have been easily apparent and selectable b breeders. Orphan crops, in contrast, may	
l Spring Harbor Laboratory, Cold Spring Harbor, NY, USA. "The Boyce Tho ol of Integrative Plant Science, Cornell University, Ithaca, NY, USA. "Howa or, NY, USA. "These authors contributed equally: Nathan T. Reem, Justin D	rpsion Institute, Ithace, NY, USA. "Hart Breading and Genetics Section, d Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring alrymple, Sebastian Soyk. "e-mail: jv27 gicomell.edu; lippmangicubLedu	such as semi-dwarfism in wheat and rice. Notably, tomato was radically altered to enable mechanical harvesting by combinin a spontaneous mutation in SELF-PRUNING	produced variants better suited to, although well short of, full agricultural exploitation and constitute an impressive demonstration of what is possible through a combination	resisted domestication because of multige regulation of the same traits ¹ . All things considered, what are the prospects for 'ta wild species? The work by Lemmon et al	
	NATURE PLANTS VOL 4 OCTOBER 2018 766-770 www.nature.com/tatureplants	742	NATURE PLANTS I VO	41 OCTOBER 2018 742-743 www.natum.com/hatur	

Rapid improvement of domestication traits in an orphan crop by genome editing.

Zachary H. Lemmon, Nathan T. Reem, Justin Dalrymple, Sebastian Soyk, Kerry E. Swartwood, Daniel Rodriguez-Leal, Joyce Van Eck & Zachary B. Lippman. Nature Plants 4: 766–770 (2018)