Genomics, Epigenetics & Synthetic Biology

Lecture 3: Engineered logic and the control of gene expression.

Jim Haseloff www.haseloff-lab.org (Education)

Applications of Synthetic Biology

Lecture 3 Cell autonomous genetic circuits with self-regulating properties e.g. microbial engineering, enviromental and biomedical sensors engineering novel metabolic pathways

Lecture 4

Morphogenetic circuits with self organising properties

e.g. microbial biofilms or self-organising communities for bioremediation and bio catalysis novel plant and algal feedstocks for bioproduction and bioenergy tissue engineering

Microbes as test-beds for circuit testing

Nature Reviews | Microbiology


```
In prokaryotes, RNA polymerase binds to the -10 and -35 regions of the promoter relative to the start site of transcription (+1)
```


Operon	-35 region	-10 region (Pribnow box)	Initiation site (+1)
lac	ACCCCAGGCTTTACACTTTATGCTTCCGGCTC	GTATGTTGTGT	GGAATTGTGAGCGG
lacl	CCATCGAAT GGCGCAAAACCTTTCGCGGTATG	GCATGATAGCG	CCCGGAAGAGAGTC
galP2	ATTTATTCCATGTCACACTTTTCGCATCTTTG	TTATGCTATGG	TTATTTCATACCAT
araBAD	GGATCCTACCTGACGCTTTTTTATCGCAACTCT	CTACTGTTTCT	CCATACCCGTTTTT
araC	GCCGTGATTATAGACACTTTTGTTACGCGTTT	TTGTCATGGCT	TTGGTCCCGCTTTG
trp	AAATGAGCTGTTGACAATTAATCATCGAACTA	GTTAACTAGTA	CGCAAGTTCACGTA
bioA	TTCCAAAACGTGTTTTTTTGTTGTTAATTCGGT	GTAGACT TGTA	AACCTAAATCTTTT
bioB	CATAATCGACTTGTAAAACCAAATTGAAAAGAT	TTAGGTTTACA	AGTCTACACCGAAT
t RNA ^{Tyr}	CAACGTAACACTTTACAGCGGCGCGCGTCATTTG	ATATGATGCGC	CCCGCTTCCCGATA
rrnDl	CAAAAAAATACTTGTGCAAAAAATTGGGGATCC	CTATAATGCGC	CTCCGTTGAGACGA
rrnE1	CAATTTTTCTATTGCGGCCTGCGGAGAACTCC	CTATAATGCGC	CTCCATCGACACGG
rrnAl	AAAATAAATGCTTGACTCTGTAGCGGGAAGGC	GTATTATGCAC	ACCCCGCGCCGCTG

sequence from Lisser, D. and Margalit, H., Nucleic Acids Res. 21, 1512 (1993).]

Copyright 1999 John Wiley and Sons, Inc. All rights reserved.

Regulation of bacterial gene expression

Examples: genetic switches and oscillators

Construction of a genetic toggle switch in *Escherichia coli*

Timothy S. Gardner*+, Charles R. Cantor* & James J. Collins*+

* Department of Biomedical Engineering, † Center for BioDynamics and ‡ Center for Advanced Biotechnology, Boston University, 44 Cummington Street, Boston, Massachusetts 02215, USA

The Repressilator

- Cellular clocks oscillate with defined periods _Circadian clocks oscillate with 24-hour period
- Elowitz and Leibler set out to build oscillator with components not found in cellular clocks
- Used three transcription factors in mutualrepression network
 - _Lacl
 - _TetR

-cl from lambda phage

• Readout: GFP controlled by Tet repressor

Repressilator design

0 min

Repressilator circuit Micheal Elowitz & Stan Liebler

0

Activity of repressilator

prom<neg(C,RbA,RubA,RtbA)>; rbs; pcr<codes(A)>; ter; prom<neg(A,RbB,RubB,RtbB)>; rbs; pcr<codes(B)>; ter; prom<neg(B,RbC,RubC,RtbC)>; rbs; pcr<codes(C)>; ter

| 0.4 < RubB | RubB < 0.6 | 0.4 < RubC | RubC < 0.6 | 0.4 < RubA | RubA < 0.6

The Repressilator

🔄 Visual GEC - localhost									
GEC Examples: Repressilator Solve GEC LBS	S Examples:	•	Solve LBS)		v0.1-20100	0820-1240	License	Update
Simulate LBS Pause Simulation: Stochastic 🔻									
Database GEC LBS	Reaction Graph Rea	octions Text	Reactions	Карра	SBML	MATLAB	Table	Plot	
Zoom Save Load	Show all Hide all - t	tetR <mark>—</mark> clR <mark>—</mark>	lacI						
directive sample 100000.0 1000 directive plot tetR; clR; lacI rate RMRNADeg = 0.001; init g9 1 mrna10 ->{RMRNADeg} g9 ->{0.1} g9 + mrna10 g9 + lacI ->{1.0} g9 - lacI g9-lacI ->{0.5} g9 + lacI g9-lacI ->{5E-05} g9-lacI + mrna10 init g31 1 mrna32 ->{RMRNADeg} g31 ->{0.09} g31 + mrna32 g31 + tetR ->{1.0} g31 - tetR g31-tetR ->{5E-05} g31 + tetR g31-tetR ->{5E-05} g31 + tetR g31-tetR ->{5E-05} g31 - tetR + mrna32 init g53 1 mrna54 ->{RMRNADeg} g53 ->{0.12} g53 + mrna54 g53 ->{0.12} g53 + clR g53-clR ->{5E-05} g53-clR + mrna54 mrna54 ->{0.1} mrna54 + lacI ◀ ◀ ◀ ◀ ₩ Weak Typing									Fit Hide
Units: O Concentrations O Molecules 0 20000 40000 60000 80000 100000						100000			

Network behavior

In vitro implementation of synthetic gene circuits

0

-20

50

Time (min)

100

Electronic optical reader

Programmable on-chip DNA compartments as artificial cells

Eyal Karzbrun,1* Alexandra M. Tayar,1* Vincent Noireaux,2 Roy H. Bar-Ziv1+

The assembly of artificial cells capable of executing synthetic DNA programs has been an important goal for basic research and biotechnology. We assembled two-dimensional DNA compartments fabricated in silicon as artificial cells capable of metabolism, programmable protein synthesis, and communication. Metabolism is maintained by continuous diffusion of nutrients and products through a thin capillary, connecting protein synthesis in the DNA compartment with the environment. We programmed protein expression cycles, autoregulated protein levels, and a signaling expression gradient, equivalent to a morphogen, in an array of interconnected compartments at the scale of an embryo. Gene expression in the DNA compartment reveals a rich, dynamic system that is controlled by geometry, offering a means for studying biological networks outside a living cell.

Fig. 2. Gene network dynamics regulated by geometry. Expression dynamics of GFP in the DNA compartment with L = 50 to 300 µm as denoted and for

Fig. 3. Communication between DNA compartments. (**A**) Fluorescent image of DNA brush overlaid with the activator (denoted A)–repressor (denoted B) network scheme. The distance between compartments A and B varied, d = 50 to 300 µm. Scale bar, 100 µm. (**B**) GFP expression kinetics at compartment A for different distances between compartments, as denoted.

Composite	pCl	pTetR	pLacl
0 min			

50 µm

Rational circuit design

- Problem: to understand design principles of biological networks
- Approach: Design and construct synthetic network
- Knowledge gained from the design of synthetic networks should help understand real networks
- Could be used to engineer new cellular behaviours in plants

a Modular riboregulator

Induced 2D pattern formation on 'lawn' of cells

Lecture 1: Genetic modification in agriculture and the advent of Synthetic Biology.

Lecture 2: Genetic circuits and genome scale DNA engineering.

Lecture 3: Engineered logic and the control of gene expression.

- 1. Cell autonomous genetic logic
- 2. Microbial test systems
- 3. Feedback regulation: toggle switches
- 4. Transcription networks: Genetic oscillators
- 5. In vitro systems for rapid testing
- 6. Complex circuit design

Lecture 4: Self-organisation and reprogramming of multicellular systems.

Additional resources: http://www.haseloff-lab.org (Education)